Search results
Results from the WOW.Com Content Network
Trans-alkenes are about 1 kcal/mol more stable than cis-alkenes. An example of this effect is cis- vs trans-2-butene. The difference is attributed to unfavorable non-bonded interactions in the cis isomer. This effects helps to explain the formation of trans-fats in food processing. In some cases, the isomerization can be reversed using UV-light.
As a general trend, trans alkenes tend to have higher melting points and lower solubility in inert solvents, as trans alkenes, in general, are more symmetrical than cis alkenes. [ 8 ] Vicinal coupling constants ( 3 J HH ), measured by NMR spectroscopy , are larger for trans (range: 12–18 Hz; typical: 15 Hz) than for cis (range: 0–12 Hz ...
Alkenes having four or more carbon atoms can form diverse structural isomers. Most alkenes are also isomers of cycloalkanes. Acyclic alkene structural isomers with only one double bond follow: [6] C 2 H 4: ethylene only; C 3 H 6: propylene only; C 4 H 8: 3 isomers: 1-butene, 2-butene, and isobutylene
This category (EC 5.2) includes enzymes that catalyze the isomerization of cis-trans isomers. Alkenes and cycloalkanes may have cis-trans stereoisomers. These isomers are not distinguished by absolute configuration but rather by the position of substituent groups relative to a plane of reference, as across a double bond or relative to a ring ...
Besides hydrogenation, the catalyst catalyzes the isomerization and hydroboration of alkenes. [1] An example of isomerization with Crabtree's catalyst. The reaction proceeds 98% to completion in 30 minutes at room temperature. Crabtree's catalyst is used in isotope exchange reactions.
But-2-ene is an acyclic alkene with four carbon atoms. It is the simplest alkene exhibiting cis/trans-isomerism (also known as (E/Z)-isomerism); that is, it exists as two geometric isomers cis-but-2-ene ((Z)-but-2-ene) and trans-but-2-ene ((E)-but-2-ene). It is a petrochemical, produced by the catalytic cracking of crude oil or the dimerization ...
In larger rings (8 or more atoms), cis–trans isomerism of the double bond may occur. This stability pattern forms part of the origin of Bredt's rule, the observation that alkenes do not form at the bridgehead of many types of bridged ring systems because the alkene would necessarily be trans in one of the rings.
Ring-closing metathesis (RCM) is a widely used variation of olefin metathesis in organic chemistry for the synthesis of various unsaturated rings via the intramolecular metathesis of two terminal alkenes, which forms the cycloalkene as the E-or Z-isomers and volatile ethylene.