enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    Likelihood function – Function related to statistics and probability theory; List of probability distributions; Probability amplitude – Complex number whose squared absolute value is a probability; Probability mass function – Discrete-variable probability distribution; Secondary measure; Merging independent probability density functions

  3. Gambling mathematics - Wikipedia

    en.wikipedia.org/wiki/Gambling_mathematics

    The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory.From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

  4. Game complexity - Wikipedia

    en.wikipedia.org/wiki/Game_complexity

    Game-tree complexity of a game is the number of leaf nodes in the smallest full-width decision tree that establishes the value of the initial position. [1] A full-width tree includes all nodes at each depth. This is an estimate of the number of positions one would have to evaluate in a minimax search to determine the value of the initial position.

  5. (a,b,0) class of distributions - Wikipedia

    en.wikipedia.org/wiki/(a,b,0)_class_of_distributions

    Furthermore, it was shown by Fackler [2] that there is a universal formula for all three distributions, called the (united) Panjer distribution. The more usual parameters of these distributions are determined by both a and b. The properties of these distributions in relation to the present class of distributions are summarised in the following ...

  6. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of ...

  7. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    This formula is also the basis for the Freedman–Diaconis rule. By taking a normal reference i.e. assuming that f ( x ) {\displaystyle f(x)} is a normal distribution , the equation for h ∗ {\displaystyle h^{*}} becomes

  8. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    Course notes on Chi-Squared Goodness of Fit Testing from Yale University Stats 101 class. Mathematica demonstration showing the chi-squared sampling distribution of various statistics, e. g. Σx², for a normal population; Simple algorithm for approximating cdf and inverse cdf for the chi-squared distribution with a pocket calculator

  9. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    When these assumptions are satisfied, the following covariance matrix K applies for the 1D profile parameters , , and under i.i.d. Gaussian noise and under Poisson noise: [9] = , = , where is the width of the pixels used to sample the function, is the quantum efficiency of the detector, and indicates the standard deviation of the measurement noise.