Search results
Results from the WOW.Com Content Network
For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by
Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
Pellet exiting muzzle, with formula for energy overlaid.. Muzzle energy is the kinetic energy of a bullet as it is expelled from the muzzle of a firearm. Without consideration of factors such as aerodynamics and gravity for the sake of comparison, muzzle energy is used as a rough indication of the destructive potential of a given firearm or cartridge.
Kinetic energy in special relativity and Newtonian mechanics. Relativistic kinetic energy increases to infinity when approaching the speed of light, thus no massive body can reach this speed. Tests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass.
Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c.
The same relations in different notation were used by Lorentz in 1913 and 1914, though he placed the energy on the left-hand side: ε = Mc 2 and ε 0 = mc 2, with ε being the total energy (rest energy plus kinetic energy) of a moving material point, ε 0 its rest energy, M the relativistic mass, and m the invariant mass.