Search results
Results from the WOW.Com Content Network
Electron micrograph of endosomes in human HeLa cells. Early endosomes (E - labeled for EGFR, 5 minutes after internalisation, and transferrin), late endosomes/MVBs (M) and lysosomes (L) are visible. Bar, 500 nm. Endosomes are a collection of intracellular sorting organelles in eukaryotic cells.
[20] [21] Quantitative phase-contrast microscopy has an advantage over fluorescent and phase-contrast microscopy in that it is both non-invasive and quantitative in its nature. Due to the narrow focal depth of conventional microscopy, live-cell imaging is to a large extent currently limited to observing cells on a single plane.
The larger organelles, such as the nucleus and vacuoles, are easily visible with the light microscope. They were among the first biological discoveries made after the invention of the microscope . Not all eukaryotic cells have each of the organelles listed below.
The cell nucleus (from Latin nucleus or nuculeus 'kernel, seed'; pl.: nuclei) is a membrane-bound organelle found in eukaryotic cells.Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many.
Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific function. The term comes from the Latin word cellula meaning 'small room'. Most cells are only visible under a microscope. Cells emerged on Earth about 4 billion years ago.
The nucleolus ultrastructure can be seen through an electron microscope, while the organization and dynamics can be studied through fluorescent protein tagging and fluorescent recovery after photobleaching . Antibodies against the PAF49 protein can also be used as a marker for the nucleolus in immunofluorescence experiments. [17]
A reaction occurs between the antigen and antibody, causing this label to become visible under the microscope. Scanning electron microscopy is a viable option if the antigen is on the surface of the cell, but transmission electron microscopy may be needed to see the label if the antigen is within the cell. [2]
There are two distinct, though connected, regions of ER that differ in structure and function: smooth ER and rough ER. The rough endoplasmic reticulum is so named because the cytoplasmic surface is covered with ribosomes, giving it a bumpy appearance when viewed through an electron microscope. The smooth ER appears smooth since its cytoplasmic ...