enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  3. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Mathematically vectors are elements of a vector space over a field, and for use in physics is usually defined with = or .Concretely, if the dimension = of is finite, then, after making a choice of basis, we can view such vector spaces as or .

  4. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Programming languages that implement matrices may have easy means for vectorization. In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well.

  5. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v. When V is Euclidean n-space, we can use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in ...

  6. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    An elementary example of a mapping describable as a tensor is the dot product, which maps two vectors to a scalar. A more complex example is the Cauchy stress tensor T, which takes a directional unit vector v as input and maps it to the stress vector T (v), which is the force (per unit area) exerted by material on the negative side of the plane ...

  7. Mode-k flattening - Wikipedia

    en.wikipedia.org/wiki/Mode-k_flattening

    The tensor can be flattened in three ways to obtain matrices comprising its mode-0, mode-1, and mode-2 vectors. [ 1 ] In multilinear algebra , mode-m flattening [ 1 ] [ 2 ] [ 3 ] , also known as matrixizing , matricizing , or unfolding , [ 4 ] is an operation that reshapes a multi-way array A {\displaystyle {\mathcal {A}}} into a matrix denoted ...

  8. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  9. Metric signature - Wikipedia

    en.wikipedia.org/wiki/Metric_signature

    In mathematics, the signature (v, p, r) [clarification needed] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix g ab of the metric tensor with respect to a basis.