Search results
Results from the WOW.Com Content Network
Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). [2] This motion pattern typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume.
On 4 July 2012, the discovery of a new particle with a mass between 125 and 127 GeV/c 2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two ...
This method of transport is largely intercellular in lieu of uptake of large particles such as bacteria via phagocytosis in which a cell engulfs a solid particle to form an internal vesicle called a phagosome. However, many of these processes have an intracellular component.
Motility also includes physiological processes like gastrointestinal movements and peristalsis. Understanding motility is important in biology, medicine, and ecology, as it impacts processes ranging from bacterial behavior to ecosystem dynamics.
The nondimensionalization is in order to compare the driving forces of particle motion (shear stress) to the resisting forces that would make it stationary (particle density and size). This dimensionless shear stress, τ ∗ {\displaystyle \tau *} , is called the Shields parameter and is defined as: [ 12 ]
Run-and-tumble motion is a movement pattern exhibited by certain bacteria and other microscopic agents. It consists of an alternating sequence of "runs" and "tumbles": during a run, the agent propels itself in a fixed (or slowly varying) direction, and during a tumble, it remains stationary while it reorients itself in preparation for the next run.
Collective motion. Collective animal behavior; Collective cell migration; Motility induced phase separation; Schooling, flocking and swarming; Active stress; Disordered hyperuniformity; Active matter systems. Biological tissues. Subcellular and cell mechanics; Crowd behaviour; Self-propelled particles and colloids
Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. [1] Gliding allows microorganisms to travel along the surface of low aqueous films.