Search results
Results from the WOW.Com Content Network
The mitotic index is a measure of cellular proliferation. [1] It is defined as the percentage of cells undergoing mitosis in a given population of cells. Mitosis is the division of somatic cells into two daughter cells. Durations of the cell cycle and mitosis vary in different cell types. An elevated mitotic index indicates more cells are dividing.
The function of astral microtubules can be generally considered as determination of cell geometry. They are absolutely required for correct positioning and orientation of the mitotic spindle apparatus, and are thus involved in determining the cell division site based on the geometry and polarity of the cells.
In histopathology, the mitosis rate (mitotic count or mitotic index) is an important parameter in various types of tissue samples, for diagnosis as well as to further specify the aggressiveness of tumors. For example, there is routinely a quantification of mitotic count in breast cancer classification. [74]
Mitotic indexing is the oldest method of assessing proliferation and is determined by counting the number of mitotic figures (cells undergoing mitosis) through a light microscope on H&E stained sections. It is usually expressed as the number of cells per microscopic field.
Cell synchronization is a process by which cells in a culture at different stages of the cell cycle are brought to the same phase. Cell synchrony is a vital process in the study of cells progressing through the cell cycle as it allows population-wide data to be collected rather than relying solely on single-cell experiments.
Prior to implantation, the embryo remains in a protein shell, the zona pellucida, and undergoes a series of rapid mitotic cell divisions called cleavage. [3] A week after fertilization the embryo still has not grown in size, but hatches from the zona pellucida and adheres to the lining of the mother's uterus.
The cyclins are necessary for the kinase subunit to function with the appropriate substrate. The mitotic cyclins can be grouped as cyclins A & B. These cyclins have a nine residue sequence in the N-terminal region called the “destruction box”, which can be recognized by the ubiquitin ligase enzyme which destroys the cyclins when appropriate.
This point also separates two halves of the G 1 phase; the post-mitotic and pre-mitotic phases. Between the beginning of the G 1 phase (which is also after mitosis has occurred) and R, the cell is known as being in the G 1 -pm subphase, or the post-mitotic phase.