Search results
Results from the WOW.Com Content Network
Only the l-arginine (symbol Arg or R) enantiomer is found naturally. [1] Arg residues are common components of proteins. It is encoded by the codons CGU, CGC, CGA, CGG, AGA, and AGG. [2] The guanidine group in arginine is the precursor for the biosynthesis of nitric oxide. [3] Like all amino acids, it is a white, water-soluble solid.
In arginylation, arginine (pictured above) is added to proteins. Arginylation is a post-translational modification in which proteins are modified by the addition of arginine (Arg) at the N-terminal amino group or side chains of reactive amino acids by the enzyme, arginyltransferase (ATE1). Recent studies have also revealed that hundreds of ...
The second isozyme, Arginase II, has been implicated in the regulation of intracellular arginine/ornithine levels. It is located in mitochondria of several tissues in the body, with most abundance in the kidney and prostate. It may be found at lower levels in macrophages, lactating mammary glands, and brain. [5]
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
Arginylglycylaspartic acid (RGD) is the most common peptide motif responsible for cell adhesion to the extracellular matrix (ECM), found in species ranging from Drosophila to humans.
In molecular biology, an arginine finger is an amino acid residue of some enzymes. [1] [2] Arginine fingers are often found in the protein superfamily of AAA+ ATPases, GTPases, and dUTPases, where they assist in the catalysis of the gamma phosphate or gamma and beta phosphates from ATP or GTP, which creates a release of energy which can be used to perform cellular work.
Arginine and proline metabolism is one of the central pathways for the biosynthesis of the amino acids arginine and proline from glutamate. The pathways linking arginine, glutamate, and proline are bidirectional. Thus, the net utilization or production of these amino acids is highly dependent on cell type and developmental stage.
Arginine 2-monooxygenase (EC 1.13.12.1) is an enzyme that catalyzes the chemical reaction L-arginine + O 2 ⇌ {\displaystyle \rightleftharpoons } 4-guanidinobutanamide + CO 2 + H 2 O Thus, the two substrates of this enzyme are L-arginine and oxygen , whereas its 3 products are 4-guanidinobutanamide , carbon dioxide , and water .