Search results
Results from the WOW.Com Content Network
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave . Phase modulation is one of the two principal forms of angle modulation , together with frequency modulation .
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:
Since Group Delay is -dA/df (A is the angle and f is frequency), that represents the slope of the graph for Phase Response versus Frequency, and moving this graph vertically does not change the slope, and therefore the Group Delay also doesn't change. Yet, with the Phase Response versus frequency graph NOT going though the origin, but is still ...
The response of a system, as a function of frequency, can also be described by a complex function. In many applications, phase information is not important. By discarding the phase information, it is possible to simplify the information in a frequency-domain representation to generate a frequency spectrum or spectral density.
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...
A minimum-phase system, whether discrete-time or continuous-time, has an additional useful property that the natural logarithm of the magnitude of the frequency response (the "gain" measured in nepers, which is proportional to dB) is related to the phase angle of the frequency response (measured in radians) by the Hilbert transform.
The amplitude response is the ratio of output amplitude to input, usually a function of the frequency. Similarly, phase response is the phase of the output with the input as reference. The input is defined as zero phase. A phase response is not limited to lying between 0° and 360°, as phase can accumulate to any amount of time.