Search results
Results from the WOW.Com Content Network
The blastocoel further expands and the inner cell mass becomes positioned on one side of the trophoblast cells forming a mammalian blastula, called a blastocyst. The axis formed by the inner cell mass and the blastocoel is the first axis of symmetry of mammalian embryo and determines its attachment point to the uterus.
A. Morula and B. cross section of a blastula displaying the blastocoel and blastoderm of early animal embryonic development. Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development, the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm.
The blastula is usually a spherical layer of cells (the blastoderm) surrounding a fluid-filled or yolk-filled cavity the blastocoel. [citation needed] Mammals at this stage form a structure called the blastocyst, characterized by an inner cell mass that is distinct from the surrounding blastula.
The blastomeres (4-cell stage) are arranged as a solid ball that when reaching a certain size, called a morula, (16-cell stage) takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals. The mammalian blastocyst hatches before implantating into the endometrial lining of the womb.
This polarisation leaves a cavity, the blastocoel, creating a structure that is now termed the blastocyst. (In animals other than mammals, this is called the blastula). The trophoblasts secrete fluid into the blastocoel. The resulting increase in size of the blastocyst causes it to hatch through the zona pellucida, which then disintegrates. [5]
Gastrulation is the stage in the early embryonic development of most animals, during which the blastula (a single-layered hollow sphere of cells), or in mammals the blastocyst, is reorganized into a two-layered or three-layered embryo known as the gastrula. [1]
The division of blastomeres from the zygote allows a single fertile cell to continue to cleave and differentiate until a blastocyst forms. The differentiation of the blastomere allows for the development of two distinct cell populations: the inner cell mass, which becomes the precursor to the embryo, and the trophectoderm, which becomes the precursor to the placenta.
The difference between a mammalian embryo and an embryo of a lower chordate animal is evident starting from blastula stage. Due to that fact, the developing mammalian embryo at this stage is called a blastocyst, not a blastula, which is more generic term. There are also several other differences from embryogenesis in lower chordates.