Search results
Results from the WOW.Com Content Network
Georg Cantor, c. 1870. Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. [1]
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
An illustration of Cantor's diagonal argument (in base 2) for the existence of uncountable sets. The sequence at the bottom cannot occur anywhere in the enumeration of sequences above. An infinite set may have the same cardinality as a proper subset of itself, as the depicted bijection f(x)=2x from the natural to the even numbers demonstrates ...
Cantor's theorem and its proof are closely related to two paradoxes of set theory. Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important ...
Thus, the Cantor set is a homogeneous space in the sense that for any two points and in the Cantor set , there exists a homeomorphism : with () =. An explicit construction of h {\displaystyle h} can be described more easily if we see the Cantor set as a product space of countably many copies of the discrete space { 0 , 1 } {\displaystyle \{0,1\}} .
Notably, is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers: For any natural number , we can consistently assume that =, and moreover it is possible to assume that is as least as large as any cardinal number we like.
All subsets of a set S (all possible choices of its elements) form the power set P(S). Georg Cantor proved that the power set is always larger than the set, i.e., |P(S)| > |S|. A special case of Cantor's theorem is that the set of all real numbers R cannot be enumerated by natural numbers, that is, R is uncountable: |R| > |N|.
In the 1870s, Georg Cantor started to develop set theory and, in 1874, published a paper proving that the algebraic numbers could be put in one-to-one correspondence with the set of natural numbers, and thus that the set of transcendental numbers must be uncountable. [16] Later, in 1891, Cantor used his more familiar diagonal argument to prove ...