Search results
Results from the WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 7 February 2025. Claimed sensitivity to electromagnetic fields This article is about a pseudomedical diagnosis. For the recognized effects of electromagnetic radiation on human health, see Electromagnetic radiation and health. Electromagnetic hypersensitivity Idiopathic environmental intolerance ...
Overhead power lines range from 1kV for local distribution to 1,150 kV for ultra high voltage lines. These can produce electric fields up to 10kV/m on the ground directly underneath, but 50 m to 100 m away these levels return to approximately ambient. [20] Metal equipment must be maintained at a safe distance from energized high-voltage lines. [21]
magnetic field A mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field. magnetism A property of materials that respond to an applied magnetic field. magnetostatics mass mass ...
A magnetar is a type of neutron star with an extremely powerful magnetic field (~10 9 to 10 11 T, ~10 13 to 10 15 G). [1] The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays. [2] The existence of magnetars was proposed in 1992 by Robert Duncan and Christopher Thompson. [3]
The very high strength of the magnetic field may cause projectile effect (or "missile-effect") accidents, where ferromagnetic objects are attracted to the center of the magnet. Pennsylvania reported 27 cases of objects becoming projectiles in the MRI environment between 2004 and 2008. [ 20 ]
An RF electromagnetic wave has both an electric and a magnetic component (electric field and magnetic field), and it is often convenient to express the intensity of the RF environment at a given location in terms of units specific to each component. For example, the unit "volts per meter" (V/m) is used to express the strength of the electric ...
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.