Search results
Results from the WOW.Com Content Network
An initial value problem is a differential equation ′ = (, ()) with : where is an open set of , together with a point in the domain of (,),called the initial condition.. A solution to an initial value problem is a function that is a solution to the differential equation and satisfies
Guess values can be determined a number of ways. Guessing is one of them. If one is familiar with the type of problem, then this is an educated guess or guesstimate.Other techniques include linearization, solving simultaneous equations, reducing dimensions, treating the problem as a time series, converting the problem to a (hopefully) linear differential equation, and using mean values.
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [ 1 ] [ 2 ] [ 3 ] On an expression or formula calculator , one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
The next step is to multiply the above value by the step size , which we take equal to one here: = = Since the step size is the change in , when we multiply the step size and the slope of the tangent, we get a change in value.
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
The above equations are, in fact, the general functions sought, but they are in their general form (with unspecified values of A and B), whilst we want to actually find their exact forms and solutions. So now we consider the problem’s given initial conditions (the problem including given initial conditions is the so-called initial value problem).
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
To define such a function, we need a point x ∈ X and a function N × X → X. The set of finite lists of natural numbers is an initial algebra for this functor. The point is the empty list, and the function is cons, taking a number and a finite list, and returning a new finite list with the number at the head.