Search results
Results from the WOW.Com Content Network
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
I agree with Wile that the code does not add any information on Pascal's triangle. The algorithm, based on Pascal's identity is already explained in English in the lead section, and it is straightforward to translate it in a specific programming language. -- Jitse Niesen 15:23, 6 Mar 2005 (UTC) I've cut the section with the computer code.
Alternative notations include C(n, k), n C k, n C k, C k n, [3] C n k, and C n,k, in all of which the C stands for combinations or choices; the C notation means the number of ways to choose k out of n objects. Many calculators use variants of the C notation because they can represent it on a single-line display.
Pascal's triangle, whose entries are the binomial coefficients [8] Triangular arrays of integers in which each row is symmetric and begins and ends with 1 are sometimes called generalized Pascal triangles; examples include Pascal's triangle, the Narayana numbers, and the triangle of Eulerian numbers. [9]
The following is an APL one-liner function to visually depict Pascal's triangle: Pascal ← { ' ' @ ( 0 =⊢ ) ↑ 0 , ⍨¨ a ⌽ ¨ ⌽∊ ¨ 0 , ¨¨ a ∘ ! ¨ a ← ⌽⍳ ⍵ } ⍝ Create a one-line user function called Pascal Pascal 7 ⍝ Run function Pascal for seven rows and show the results below: 1 1 2 1 3 3 1 4 6 4 1 5 10 10 5 1 6 ...
In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .
Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then
Jia Xian triangle (Pascal's triangle) using rod numerals, as depicted in a publication of Zhu Shijie in 1303 AD. Yang Hui referred to Jia Xian's Shi Suo Suan Shu in the Yongle Encyclopedia Jia Xian ( simplified Chinese : 贾宪 ; traditional Chinese : 賈憲 ; pinyin : Jiǎ Xiàn ; Wade–Giles : Chia Hsien ; ca. 1010–1070) was a Chinese ...