Search results
Results from the WOW.Com Content Network
Brownian motors are nanoscale or molecular machines that use chemical reactions to generate directed motion in space. [1] The theory behind Brownian motors relies on the phenomenon of Brownian motion, random motion of particles suspended in a fluid (a liquid or a gas) resulting from their collision with the fast-moving molecules in the fluid. [2]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The time it takes a vehicle to accelerate from 0 to 60 miles per hour (97 km/h or 27 m/s), often said as just "zero to sixty" or "nought to sixty", is a commonly used performance measure for automotive acceleration in the United States and the United Kingdom. In the rest of the world, 0 to 100 km/h (0 to 62.1 mph) is used.
Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). [2] This motion pattern typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume.
Artificial satellites move along curved orbits, rather than in straight lines, because of the Earth's gravity. Translated from Latin, Newton's first law reads, Every object perseveres in its state of rest, or of uniform motion in a right line, except insofar as it is compelled to change that state by forces impressed thereon. [note 3]
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
A system of bodies may have internal kinetic energy due to the relative motion of the bodies in the system. For example, in the Solar System the planets and planetoids are orbiting the Sun. In a tank of gas, the molecules are moving in all directions. The kinetic energy of the system is the sum of the kinetic energies of the bodies it contains.
The fastest-moving plates are the oceanic plates, with the Cocos Plate advancing at a rate of 75 millimetres (3.0 in) per year [17] and the Pacific Plate moving 52–69 millimetres (2.0–2.7 in) per year. At the other extreme, the slowest-moving plate is the Eurasian Plate, progressing at a typical rate of about 21 millimetres (0.83 in) per year.