enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Particle velocity - Wikipedia

    en.wikipedia.org/wiki/Particle_velocity

    Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  4. Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Brownian_motion

    In 2010, the instantaneous velocity of a Brownian particle (a glass microsphere trapped in air with optical tweezers) was measured successfully. The velocity data verified the Maxwell–Boltzmann velocity distribution, and the equipartition theorem for a Brownian particle. [11]

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    is the flow velocity relative to the object (meters per second). Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow

  6. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules. For example, one would calculate the kinetic energy of an 80 kg mass (about 180 lbs) traveling at 18 metres per second (about 40 mph, or 65 km/h) as

  7. Maxwell–Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann...

    The Maxwell–Boltzmann distribution applies fundamentally to particle velocities in three dimensions, but turns out to depend only on the speed (the magnitude of the velocity) of the particles. A particle speed probability distribution indicates which speeds are more likely: a randomly chosen particle will have a speed selected randomly from ...

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Particle image velocimetry - Wikipedia

    en.wikipedia.org/wiki/Particle_image_velocimetry

    The result is a deep neural network for PIV which can provide estimation of dense motion, down to a maximum of one vector for one pixel if the recorded images allow. AI PIV promises a dense velocity field, not limited by the size of the interrogation window, which limits traditional PIV to one vector per 16 x 16 pixels. [32]