Search results
Results from the WOW.Com Content Network
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...
Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force ( F d ) and the buoyancy is equal to the downward force of gravity ( F G ) acting on the object.
is the flow velocity relative to the object (meters per second). Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow
The Maxwell–Boltzmann distribution applies fundamentally to particle velocities in three dimensions, but turns out to depend only on the speed (the magnitude of the velocity) of the particles. A particle speed probability distribution indicates which speeds are more likely: a randomly chosen particle will have a speed selected randomly from ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
This is the "textbook" case of the vertical motion of an object falling a small distance close to the surface of a planet. It is a good approximation in air as long as the force of gravity on the object is much greater than the force of air resistance, or equivalently the object's velocity is always much less than the terminal velocity (see below).
In the Lagrangian, the position coordinates and velocity components are all independent variables, and derivatives of the Lagrangian are taken with respect to these separately according to the usual differentiation rules (e.g. the partial derivative of L with respect to the z velocity component of particle 2, defined by v z,2 = dz 2 /dt, is ...