Search results
Results from the WOW.Com Content Network
Riemann integral. The integral as the area of a region under a curve. A sequence of Riemann sums over a regular partition of an interval. The number on top is the total area of the rectangles, which converges to the integral of the function. The partition does not need to be regular, as shown here.
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .
In mathematics, the Riemann–Liouville integral associates with a real function: another function I α f of the same kind for each value of the parameter α > 0.The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, I α f is an iterated antiderivative of f of order α.
Suppose is Riemannian and is a twice-differentiable immersion. Recall that the second fundamental form is, for each a symmetric bilinear map which is valued in the -orthogonal linear subspace to Then. h ⊥ {\displaystyle {\widetilde {h}} (u,v)=h (u,v)- (\nabla \varphi )^ {\perp }g (u,v)} for all.
There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region ...
In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. [1] In the context of Riemann integrals (or, equivalently, Darboux integrals), this typically involves unboundedness, either of the set over which the integral is taken or of ...
Bernhard Riemann. Georg Friedrich Bernhard Riemann (German: [ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman] ⓘ; [1][2] 17 September 1826 – 20 July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first ...