Search results
Results from the WOW.Com Content Network
All algorithms that work this way are referred to as Krylov subspace methods; they are among the most successful methods currently available in numerical linear algebra. These methods can be used in situations where there is an algorithm to compute the matrix-vector multiplication without there being an explicit representation of A ...
A subspace V ⊂ R n is a controlled invariant subspace if and only if AV ⊂ V + Im B. If V is a controlled invariant subspace, then there exists a matrix K such that the input u(t) = Kx(t) keeps the state within V; this is a simple feedback control (Ghosh 1985, Thm 1.1).
In mathematics, an invariant subspace of a linear mapping T : V → V i.e. from some vector space V to itself, is a subspace W of V that is preserved by T. More generally, an invariant subspace for a collection of linear mappings is a subspace preserved by each mapping individually.
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
The time variable can be continuous (e.g. ) or discrete (e.g. ). In the latter case, the time variable is usually used instead of . Hybrid systems allow for time domains that have both continuous and discrete parts. Depending on the assumptions made, the state-space model representation can assume the following forms:
In the field of mathematics known as functional analysis, the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends some non-trivial closed subspace to itself. Many variants of the problem have been solved, by restricting the class of bounded operators considered or by ...
In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...
Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.