Search results
Results from the WOW.Com Content Network
A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake ...
The hyperbola = /.As approaches ∞, approaches 0.. In mathematics, division by infinity is division where the divisor (denominator) is ∞.In ordinary arithmetic, this does not have a well-defined meaning, since ∞ is a mathematical concept that does not correspond to a specific number, and moreover, there is no nonzero real number that, when added to itself an infinite number of times ...
The aleph numbers differ from the infinity commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...
This description does not work for 0; no matter how many times it is divided by 2, it can always be divided by 2 again. Rather, the usual convention is to set the 2-order of 0 to be infinity as a special case. [30] This convention is not peculiar to the 2-order; it is one of the axioms of an additive valuation in higher algebra. [31]
For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4 , or 20 / 5 = 4 . [ 2 ] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient.
For an integer n, the 2-order of n (also called valuation) is the largest natural number ν such that 2 ν divides n. This definition applies to positive and negative numbers n, although some authors restrict it to positive n; and one may define the 2-order of 0 to be infinity (see also parity of zero). [2] The 2-order of n is written ν 2 (n ...
Division of any non-zero finite number by zero results in either positive or negative infinity. Another difference between transreal and IEEE floating-point operations is that nullity compares equal to nullity, whereas NaN does not compare equal to NaN. This is due to nullity being a number, whereas NaN is an indeterminate value. It is easy to ...
In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring . The term wheel is inspired by the topological picture ⊙ {\displaystyle \odot } of the real projective line together with an extra point ⊥ ( bottom element ) such that ⊥ = 0 / 0 {\displaystyle \bot =0/0} .