Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
In plants, both enzymes can catalyze the oxidation of ortho-diphenols substrates into their corresponding ortho-quinones. The key difference between the two related enzymes is that tyrosinase can catalyze the hydroxylation of monophenols to diphenols (monophenolase activity) as well as the oxidation of the o-diphenol to the o-quinone ...
The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. [1]
An enzyme's activity decreases markedly outside its optimal temperature and pH, and many enzymes are (permanently) denatured when exposed to excessive heat, losing their structure and catalytic properties. Some enzymes are used commercially, for example, in the synthesis of antibiotics.
In plants, PPO is a plastidic enzyme with unclear synthesis and function. In functional chloroplasts, it may be involved in oxygen chemistry like mediation of pseudocyclic photophosphorylation. [15] Enzyme nomenclature differentiates between monophenol oxidase enzymes (tyrosinases) and o-diphenol:oxygen oxidoreductase enzymes (catechol oxidases).
Glutathione reductase (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the GSR gene.Glutathione reductase (EC 1.8.1.7) catalyzes the reduction of glutathione disulfide to the sulfhydryl form glutathione (), which is a critical molecule in resisting oxidative stress and maintaining the reducing environment of the cell.
Cyanobacterial DesA, [19] an enzyme that can introduce a second cis double bond at the delta-12 position of fatty acid bound to membrane glycerolipids. This enzyme is involved in chilling tolerance; the phase transition temperature of lipids of cellular membranes being dependent on the degree of unsaturation of fatty acids of the membrane lipids.
Ascorbate is a known cofactor of myrosinase, serving as a base catalyst in glucosinolate hydrolysis. [1] [7] For example, myrosinase isolated from daikon (Raphanus sativus) demonstrated an increase in V max from 2.06 μmol/min per mg of protein to 280 μmol/min per mg of protein on the substrate, allyl glucosinolate (sinigrin) when in the presence of 500 μM ascorbate. [4]