Search results
Results from the WOW.Com Content Network
According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...
For gas giant planets such as Jupiter, Saturn, Uranus, and Neptune, the surface gravity is given at the 1 bar pressure level in the atmosphere. [12] It has been found that for giant planets with masses in the range up to 100 times Earth's mass, their gravity surface is nevertheless very similar and close to 1 g, a region named the gravity ...
The planet's strong gravitational influence leads to many small comets and asteroids colliding with the planet. The rate of cometary impacts on Jupiter is thought to be between 2,000 and 8,000 times higher than the rate on Earth.
Jupiter was the first of the Sun's planets to form, and its inward migration during the primordial phase of the Solar System affected much of the formation history of the other planets. Jupiter's atmosphere consists of 76% hydrogen and 24% helium by mass, with a denser interior.
Like Saturn's largest moon Titan, it is larger than the planet Mercury, but has somewhat less surface gravity than Mercury, Io, or the Moon due to its lower density compared to the three. [18] Ganymede orbits Jupiter in roughly seven days and is in a 1:2:4 orbital resonance with the moons Europa and Io, respectively.
Io (/ ˈ aɪ. oʊ /), or Jupiter I, is the innermost and second-smallest of the four Galilean moons of the planet Jupiter.Slightly larger than Earth's moon, Io is the fourth-largest moon in the Solar System, has the highest density of any moon, the strongest surface gravity of any moon, and the lowest amount of water by atomic ratio of any known astronomical object in the Solar System.
At the center of a planet or star, gravitational compression produces heat by the Kelvin–Helmholtz mechanism. This is the mechanism that explains how Jupiter continues to radiate heat produced by its gravitational compression. [1] The most common reference to gravitational compression is stellar evolution.
It is a giant planet with a mass one-thousandth that of the Sun, but two and a half times that of all the other planets in the Solar System combined. Jupiter is a gas giant, along with Saturn, with the other two giant planets, Uranus and Neptune, being ice giants. Jupiter was known to astronomers of ancient times. [1]