Search results
Results from the WOW.Com Content Network
Industrial enzymes are enzymes that are commercially used in a variety of industries such as pharmaceuticals, chemical production, biofuels, food and beverage, and consumer products. Due to advancements in recent years, biocatalysis through isolated enzymes is considered more economical than use of whole cells.
Microbial enzymes are widely utilized as biocatalysts in fields such as biotechnology, agriculture, and pharmaceuticals. Metagenomic data serve as a valuable resource for identifying novel CUEs from previously unknown microbes present in complex microbial communities across diverse ecosystems.
Moreover, nearly all commercially produced industrial enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as is the case for single-cell proteins , baker's yeast , and starter cultures for lactic acid bacteria used in cheesemaking .
Detergent enzymes are biological enzymes that are used with detergents. They catalyze the reaction between stains and the water solution, thus aiding stain removal and improving efficiency. [ 1 ] Laundry detergent enzymes are the largest application of industrial enzymes .
Enzymes are used in the chemical industry and other industrial applications when extremely specific catalysts are required. Enzymes in general are limited in the number of reactions they have evolved to catalyze and also by their lack of stability in organic solvents and at high temperatures.
Industrial fermentation can be used for enzyme production, where proteins with catalytic activity are produced and secreted by microorganisms. The development of fermentation processes, microbial strain engineering and recombinant gene technologies has enabled the commercialization of a wide range of enzymes.
Pages in category "Industrial enzymes" The following 4 pages are in this category, out of 4 total. This list may not reflect recent changes. ...
-Enzymes exhibit extreme selectivity towards their substrates. Typically enzymes display three major types of selectivity: Chemoselectivity: Since the purpose of an enzyme is to act on a single type of functional group, other sensitive functionalities, which would normally react to a certain extent under chemical catalysis, survive. As a result ...