Search results
Results from the WOW.Com Content Network
For example, if you now know that your total trip distance is an expected 2,325 miles and you’ve learned that your vehicle gives you 24 miles per gallon fuel economy, you simply divide the first ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Using EPA 2018 Fuel Economy Guides assumptions for national average pricing of $2.56/gal regular gasoline and $0.13/kWh [42] we can calculate a vehicle that is rated at 84 MPGe or 40 kW/100 Mi efficiency and has a 16.5 kW EV battery of which 13.5 kWh is usable for electric driving with an advertised range of 33 miles per charge.
Fuel consumption monitor from a 2006 Honda Airwave.The displayed fuel economy is 18.1 km/L (5.5 L/100 km; 43 mpg ‑US). A Briggs and Stratton Flyer from 1916. Originally an experiment in creating a fuel-saving automobile in the United States, the vehicle weighed only 135 lb (61.2 kg) and was an adaptation of a small gasoline engine originally designed to power a bicycle.
Assuming the Emma Maersk consumes diesel (as opposed to fuel oil which would be the more precise fuel) then 1 kg diesel = 1.202 litres = 0.317 US gallons. This corresponds to 46,525 kJ. Assuming a standard 14 tonnes per container (per teu) this yields 74 kJ per tonne-km at a speed of 45 km/h (24 knots).
Replacing a cylindrical fuel tank with a D-Tank can result in 46% additional fuel capacity. When calculating volume requirements, one would begin by assessing the available space. Once length, width and height restrictions have been ascertained, the easiest method of determining volume is with the use of a truck tank volume calculator.
Consumption map of a 1.5-litre three-cylinder diesel engine. A consumption map or efficiency map [1] is a chart that displays the brake-specific fuel consumption of an internal combustion engine at a given rotational speed and mean effective pressure, in grams per kilowatt-hour (g/kWh).
A diesel cycle engine can be as much as 40% to 50% efficient at converting fuel into work, [2] where a typical automotive gasoline engine's efficiency is about 25% to 30%. [3] [4] In general, an engine is designed to run on a single fuel source and substituting one fuel for another may affect the thermal efficiency.