Search results
Results from the WOW.Com Content Network
Aspvall, Plass & Tarjan (1979) found a simpler linear time procedure for solving 2-satisfiability instances, based on the notion of strongly connected components from graph theory. [4] Two vertices in a directed graph are said to be strongly connected to each other if there is a directed path from one to the other and vice versa.
In mathematics, economics, and computer science, the stable marriage problem (also stable matching problem) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element.
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph. Odd cycle transversal is an NP-complete algorithmic problem that asks, given a graph G = ( V , E ) and a number k , whether there exists a set of k vertices whose removal from G would cause the resulting graph to be bipartite. [ 31 ]
A schematic picture of the skip list data structure. Each box with an arrow represents a pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the bottom represent the ordered data sequence.
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains.
A clique problem for a class of so-called M-graphs. It is shown that finding an isomorphism for n-vertex graphs is equivalent to finding an n-clique in an M-graph of size n 2. This fact is interesting because the problem of finding a clique of order (1 − ε)n in a M-graph of size n 2 is NP-complete for arbitrarily small positive ε. [43]