Search results
Results from the WOW.Com Content Network
This is why atomic hydrogen escapes preferentially from an atmosphere. If there is a strong thermally driven atmospheric escape of light atoms, heavier atoms can achieve the escape velocity through viscous drag by those escaping lighter atoms. [2] This is another way of thermal escape, called hydrodynamic escape.
An alternative expression for the escape velocity v e particularly useful at the surface on the body is: = where r is the distance between the center of the body and the point at which escape velocity is being calculated and g is the gravitational acceleration at that distance (i.e., the surface gravity). [11]
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
Newton's cannonball was a thought experiment Isaac Newton used to hypothesize that the force of gravity was universal, and it was the key force for planetary motion. It appeared in his posthumously published 1728 work De mundi systemate (also published in English as A Treatise of the System of the World ).
Thus, if the molecular weight of one gas is four times that of another, it would diffuse through a porous plug or escape through a small pinhole in a vessel at half the rate of the other (heavier gases diffuse more slowly). A complete theoretical explanation of Graham's law was provided years later by the kinetic theory of gases.
The H and H 2 diffuse upward through the heterosphere to the exobase where they escape the atmosphere by Jeans thermal escape and/or a number of suprathermal mechanisms. On Earth, the rate-limiting step or "bottleneck" for hydrogen escape is diffusion through the heterosphere. Therefore, hydrogen escape on Earth is diffusion-limited.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
One of the best-known examples of an event horizon derives from general relativity's description of a black hole, a celestial object so dense that no nearby matter or radiation can escape its gravitational field. Often, this is described as the boundary within which the black hole's escape velocity is greater than the speed of light.