Search results
Results from the WOW.Com Content Network
This is why atomic hydrogen escapes preferentially from an atmosphere. If there is a strong thermally driven atmospheric escape of light atoms, heavier atoms can achieve the escape velocity through viscous drag by those escaping lighter atoms. [2] This is another way of thermal escape, called hydrodynamic escape.
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: Ballistic trajectory – no other forces are acting on the object, such as propulsion and friction; No other gravity-producing objects exist.
Thus, if the molecular weight of one gas is four times that of another, it would diffuse through a porous plug or escape through a small pinhole in a vessel at half the rate of the other (heavier gases diffuse more slowly). A complete theoretical explanation of Graham's law was provided years later by the kinetic theory of gases.
Newton's cannonball was a thought experiment Isaac Newton used to hypothesize that the force of gravity was universal, and it was the key force for planetary motion. It appeared in his posthumously published 1728 work De mundi systemate (also published in English as A Treatise of the System of the World ).
The experiment uses a simple barometer to measure the pressure of air, filling it with mercury up until 75% of the tube. Any air bubbles in the tube must be removed by inverting several times. After that, a clean mercury is filled once again until the tube is completely full.
Jean le Rond d'Alembert (1717-1783) From experiments it is known that there is always – except in case of superfluidity – a drag force for a body placed in a steady fluid onflow. The figure shows the drag coefficient C d for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere ...
The escape of any atmospheric gas can be diffusion-limited, but only diffusion-limited escape of hydrogen has been observed in our solar system, on Earth, Mars, Venus and Titan. [1] Diffusion-limited hydrogen escape was likely important for the rise of oxygen in Earth's atmosphere ( the Great Oxidation Event ) and can be used to estimate the ...