enow.com Web Search

  1. Ads

    related to: modular arithmetic equations pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  4. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.

  5. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Hence another name is the group of primitive residue classes modulo n. In the theory of rings , a branch of abstract algebra , it is described as the group of units of the ring of integers modulo n .

  6. Quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quadratic_reciprocity

    Gauss published the first and second proofs of the law of quadratic reciprocity on arts 125–146 and 262 of Disquisitiones Arithmeticae in 1801.. In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers.

  7. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .

  8. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo n {\displaystyle n} is a congruence relation on the ring of integers, and arithmetic modulo n {\displaystyle n} occurs on the corresponding quotient ring .

  9. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    Modular arithmetic for a modulus defines any two elements and that differ by a multiple of to be equivalent, denoted by ⁠ ⁠. Every integer is equivalent to one of the integers from 0 {\displaystyle 0} to ⁠ n − 1 {\displaystyle n-1} ⁠ , and the operations of modular arithmetic modify normal arithmetic by replacing the result of any ...

  1. Ads

    related to: modular arithmetic equations pdf