enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law.This is the first of two theorems (see Noether's second theorem) published by mathematician Emmy Noether in 1918. [1]

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    That is, conservation of momentum is a consequence of the fact that the laws of physics do not depend on position; this is a special case of Noether's theorem. [25] For systems that do not have this symmetry, it may not be possible to define conservation of momentum. Examples where conservation of momentum does not apply include curved ...

  4. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.

  6. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane, = = ^ the following general results apply to the particle.

  7. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    The sources of any gravitational field (matter and energy) is represented in relativity by a type (0, 2) symmetric tensor called the energy–momentum tensor. It is closely related to the Ricci tensor. Being a second rank tensor in four dimensions, the energy–momentum tensor may be viewed as a 4 by 4 matrix.

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E 0 and m = m 0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same. A more general form of relation holds for general relativity.

  9. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    Accordingly, the change of the angular momentum is equal to the sum of the external moments. The variation of angular momentum ρ ⋅ Q ⋅ r ⋅ c u {\displaystyle \rho \cdot Q\cdot r\cdot c_{u}} at inlet and outlet, an external torque M {\displaystyle M} and friction moments due to shear stresses M τ {\displaystyle M_{\tau }} act on an ...