Search results
Results from the WOW.Com Content Network
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]
Addition is commutative, meaning that one can change the order of the terms in a sum, but still get the same result. Symbolically, if a and b are any two numbers, then a + b = b + a. The fact that addition is commutative is known as the "commutative law of addition" or "commutative property of addition".
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.
The inverse of addition is subtraction, and the inverse of multiplication is division. Similarly, a logarithm is the inverse operation of exponentiation . Exponentiation is when a number b , the base , is raised to a certain power y , the exponent , to give a value x ; this is denoted b y = x . {\displaystyle b^{y}=x.}
Modular addition, defined in this way for the integers from to , forms a group, denoted as or (/, +) , with as the identity element and as the inverse element of . A familiar example is addition of hours on the face of a clock , where 12 rather than 0 is chosen as the representative of the identity.
Under addition, a ring is an abelian group, which means that addition is commutative and associative; it has an identity, called the additive identity, and denoted 0; and every element x has an inverse, called its additive inverse and denoted −x. Because of commutativity, the concepts of left and right inverses are meaningless since they do ...
An equivalent, and more succinct, definition is: a field has two commutative operations, called addition and multiplication; it is a group under addition with 0 as the additive identity; the nonzero elements form a group under multiplication with 1 as the multiplicative identity; and multiplication distributes over addition.