Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
In addition, the elliptical, rather than perfectly circular, satellite orbits cause the time dilation and gravitational frequency shift effects to vary with time. This eccentricity effect causes the clock rate difference between a GPS satellite and a receiver to increase or decrease depending on the altitude of the satellite.
But time is weird, and there's another phenomenon called relative velocity time dilation that usurps gravity's effect. Why astronauts age slower Relative velocity time dilation is where time moves ...
This gravitational frequency shift corresponds to a gravitational time dilation: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field.
In a nearly static gravitational field of moderate strength (say, of stars and planets, but not one of a black hole or close binary system of neutron stars) the effect may be considered as a special case of gravitational time dilation. The measured elapsed time of a light signal in a gravitational field is longer than it would be without the ...
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
Navigational signals from GPS satellites orbiting at 20 000 km altitude are perceived blueshifted by approximately 0.5 ppb or 5 × 10 −10, [10] corresponding to a (negligible) increase of less than 1 Hz in the frequency of a 1.5 GHz GPS radio signal (however, the accompanying gravitational time dilation affecting the atomic clock in the ...