enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Octet rule - Wikipedia

    en.wikipedia.org/wiki/Octet_rule

    The bonding in carbon dioxide (CO 2): all atoms are surrounded by 8 electrons, fulfilling the octet rule.. The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas.

  3. 18-electron rule - Wikipedia

    en.wikipedia.org/wiki/18-electron_rule

    The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number.

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Electron atomic and molecular orbitals A Bohr diagram of lithium. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1]

  5. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    A molecular orbital can specify the electron configuration of a molecule: the spatial distribution and energy of one (or one pair of) electron(s). Most commonly a MO is represented as a linear combination of atomic orbitals (the LCAO-MO method), especially in qualitative or very approximate usage.

  6. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    Elements are placed in the periodic table according to their electron configurations, [38] the periodic recurrences of which explain the trends in properties across the periodic table. [39] An electron can be thought of as inhabiting an atomic orbital, which characterizes the probability it can be found in any particular region around the atom.

  7. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The rules restricting the values of the quantum numbers, and their energies (see below), explain the electron configuration of the atoms and the periodic table. The stationary states (quantum states) of a hydrogen-like atom are its atomic orbitals. However, in general, an electron's behavior is not fully described by a single orbital.

  8. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron density at either side of the nuclei and the σ* 2p has some electron density between the nuclei.

  9. Periodic table (electron configurations) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(electron...

    In many cases, multiple configurations are within a small range of energies and the small irregularities that arise in the d- and f-blocks are quite irrelevant chemically. [1] The construction of the periodic table ignores these irregularities and is based on ideal electron configurations. [2]