Search results
Results from the WOW.Com Content Network
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...
For example, NH 3 is a Lewis base, because it can donate its lone pair of electrons. Trimethylborane [(CH 3 ) 3 B] is a Lewis acid as it is capable of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share an electron pair furnished by the Lewis base, forming a dative bond. [ 1 ]
Bases are defined by the Brønsted–Lowry theory as chemical substances that can accept a proton, i.e., a hydrogen ion. In water this is equivalent to a hydronium ion). The Lewis theory instead defines a Base as an electron-pair donor. The Lewis definition is broader — all Brønsted–Lowry bases are also Lewis bases.
In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications. For example, besides buffers being used in lab processes, human blood acts as a buffer to maintain pH.
The Schlosser base (or Lochmann-Schlosser base), the combination of n-butyllithium and potassium tert-butoxide, is commonly cited as a superbase. n -Butyllithium and potassium tert -butoxide form a mixed aggregate of greater reactivity than either component reagent.
Although an amphiprotic species must be amphoteric, the converse is not true. For example, a metal oxide such as zinc oxide, ZnO, contains no hydrogen and so cannot donate a proton. Nevertheless, it can act as an acid by reacting with the hydroxide ion, a base: ZnO + 2 OH − + H 2 O → [Zn(OH) 4] 2−. Zinc oxide can also act as a base:
Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when dissolved in water. Sodium hydroxide (NaOH) is an Arrhenius base because it dissociates the hydroxide ion when it is dissolved in water. [3]
An example of a weak base is ammonia. It does not contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. [4] The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base. [5]