Search results
Results from the WOW.Com Content Network
Hydrogen chloride can protonate molecules or ions and can also serve as an acid-catalyst for chemical reactions where anhydrous (water-free) conditions are desired. Because of its acidic nature, hydrogen chloride is a corrosive substance , particularly in the presence of moisture.
The first solvation shell of a sodium ion dissolved in water. An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water would be represented as Na + (aq) + Cl ...
Hydrogen chloride is produced by combining chlorine and hydrogen: Cl 2 + H 2 → 2 HCl. As the reaction is exothermic, the installation is called an HCl oven or HCl burner. The resulting hydrogen chloride gas is absorbed in deionized water, resulting in chemically pure hydrochloric acid. This reaction can give a very pure product, e.g. for use ...
For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na + and Cl − take no part in the reaction. The reaction is consistent with the Brønsted–Lowry definition because in reality the hydrogen ion exists as the hydronium ion, so that the neutralization reaction may be written as
In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), usually denoted by H +, to an atom, molecule, or ion, forming a conjugate acid. [1] (The complementary process, when a proton is removed from a Brønsted–Lowry acid, is deprotonation.) Some examples include The protonation of water by ...
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
Gaseous hydrogen chloride is generally referred to as anhydrous, to distinguish it from its solution in water, hydrochloric acid. Reactions which produce water can be kept dry using a Dean–Stark apparatus .
The hydrogen halides are diatomic molecules with no tendency to ionize in the gas phase (although liquified hydrogen fluoride is a polar solvent somewhat similar to water). Thus, chemists distinguish hydrogen chloride from hydrochloric acid. The former is a gas at room temperature that reacts with water to give the acid.