Search results
Results from the WOW.Com Content Network
Functions can be written as a linear combination of the basis functions, = = (), for example through a Fourier expansion of f(t). The coefficients b j can be stacked into an n by 1 column vector b = [b 1 b 2 … b n] T. In some special cases, such as the coefficients of the Fourier series of a sinusoidal function, this column vector has finite ...
For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it. Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them:
In power iteration, for example, the eigenvector is actually computed before the eigenvalue (which is typically computed by the Rayleigh quotient of the eigenvector). [11] In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
As the function f is also an eigenvector under each Hecke operator T i, it has a corresponding eigenvalue. More specifically a i, i ≥ 1 turns out to be the eigenvalue of f corresponding to the Hecke operator T i. In the case when f is not a cusp form, the eigenvalues can be given explicitly. [1]
Let (H, , ) be a real or complex Hilbert space and let A : H → H be a bounded, compact, self-adjoint operator.Then there is a sequence of non-zero real eigenvalues λ i, i = 1, …, N, with N equal to the rank of A, such that |λ i | is monotonically non-increasing and, if N = +∞, + =
In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form
In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A.