Search results
Results from the WOW.Com Content Network
Functions can be written as a linear combination of the basis functions, = = (), for example through a Fourier expansion of f(t). The coefficients b j can be stacked into an n by 1 column vector b = [b 1 b 2 … b n] T. In some special cases, such as the coefficients of the Fourier series of a sinusoidal function, this column vector has finite ...
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
Typically, the method is used in combination with some other method which finds approximate eigenvalues: the standard example is the bisection eigenvalue algorithm, another example is the Rayleigh quotient iteration, which is actually the same inverse iteration with the choice of the approximate eigenvalue as the Rayleigh quotient corresponding ...
For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it. Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them:
The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data.Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L 2 that consists of the eigenfunctions of the autocovariance operator.