Search results
Results from the WOW.Com Content Network
Profit maximization using the total revenue and total cost curves of a perfect competitor. To obtain the profit maximizing output quantity, we start by recognizing that profit is equal to total revenue minus total cost (). Given a table of costs and revenues at each quantity, we can either compute equations or plot the data directly on a graph.
This is a corner solution as the highest possible IC (IC 2) intersects the budget line at one of the intercepts (x-intercept). [1] In mathematics and economics, a corner solution is a special solution to an agent's maximization problem in which the quantity of one of the arguments in the maximized function is zero. In non-technical terms, a ...
The interval scheduling problem can be viewed as a profit maximization problem, where the number of intervals in the mutually compatible subset is the profit. The charging argument can be used to show that the earliest finish time algorithm is optimal for the interval scheduling problem.
Hotelling's lemma is a result in microeconomics that relates the supply of a good to the maximum profit of the producer. It was first shown by Harold Hotelling, and is widely used in the theory of the firm.
The company maximises its profits and produces a quantity where the company's marginal revenue (MR) is equal to its marginal cost (MC). The company is able to collect a price based on the average revenue (AR) curve. The difference between the company's average revenue and average cost, multiplied by the quantity sold (Qs), gives the total profit.
Another naive solution is to greedily assign the pair with the smallest cost first, and remove the vertices; then, among the remaining vertices, assign the pair with the smallest cost; and so on. This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows:
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...
In economics, many problems involve multiple objectives along with constraints on what combinations of those objectives are attainable.For example, consumer's demand for various goods is determined by the process of maximization of the utilities derived from those goods, subject to a constraint based on how much income is available to spend on those goods and on the prices of those goods.