Search results
Results from the WOW.Com Content Network
A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.
A spacetime diagram is typically drawn with only a single space and a single time coordinate. Fig. 2-1 presents a spacetime diagram illustrating the world lines (i.e. paths in spacetime) of two photons, A and B, originating from the same event and going in opposite directions. In addition, C illustrates the world line of a slower-than-light ...
This is a list of well-known spacetimes in general relativity. [1] Where the metric tensor is given, a particular choice of coordinates is used, but there are often other useful choices of coordinate available.
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
The most spectacular of Einstein's predictions was his calculation that the curvature terms in the spatial components of the spacetime interval could be measured in the bending of light around a massive body. Light has a slope of ±1 on a spacetime diagram. Its movement in space is equal to its movement in time.
However, it arrives there at a different (later) time. The world line of the Earth is therefore helical in spacetime (a curve in a four-dimensional space) and does not return to the same point. Spacetime is the collection of events, together with a continuous and smooth coordinate system identifying the events. Each event can be labeled by four ...
In the spacetime diagram, the dashed line represents a set of points considered to be simultaneous with the origin by an observer moving with a velocity v of one-quarter of the speed of light. The dotted horizontal line represents the set of points regarded as simultaneous with the origin by a stationary observer.
The Schwarzschild coordinate system can only cover a single exterior region and a single interior region, such as regions I and II in the Kruskal–Szekeres diagram. The Kruskal–Szekeres coordinate system, on the other hand, can cover a "maximally extended" spacetime which includes the region covered by Schwarzschild coordinates.