Search results
Results from the WOW.Com Content Network
Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
In chemistry, the common-ion effect refers to the decrease in solubility of an ionic precipitate by the addition to the solution of a soluble compound with an ion in common with the precipitate. [1] This behaviour is a consequence of Le Chatelier's principle for the equilibrium reaction of the ionic association / dissociation .
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.
In chemistry, ion association is a chemical reaction whereby ions of opposite electric charge come together in solution to form a distinct chemical entity. [1] [2] Ion associates are classified, according to the number of ions that associate with each other, as ion pairs, ion triplets, etc. Ion pairs are also classified according to the nature of the interaction as contact, solvent-shared or ...
The value of an equilibrium constant determined in this manner is dependent on the ionic strength. When published constants refer to an ionic strength other than the one required for a particular application, they may be adjusted by means of specific ion theory (SIT) and other theories. [11]
ε 0 is the permittivity of free space, equal to 8.854 × 10 −12 C 2 J −1 m −1; r 0 is the nearest-neighbor distance between ions; and n is the Born exponent (a number between 5 and 12, determined experimentally by measuring the compressibility of the solid, or derived theoretically).
The equilibrium state is represented by the equation: + + If α is the fraction of dissociated electrolyte, then αc 0 is the concentration of each ionic species. (1 - α) must, therefore be the fraction of undissociated electrolyte, and (1 - α)c 0 the concentration of same. The dissociation constant may therefore be given as