enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygen–hemoglobin...

    The formation of a bicarbonate ion will release a proton into the plasma, decreasing pH (increased acidity), which also shifts the curve to the right as discussed above; low CO 2 levels in the blood stream results in a high pH, and thus provides more optimal binding conditions for hemoglobin and O 2. This is a physiologically favored mechanism ...

  3. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. [1] That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment.

  4. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. Hence, blood with high carbon dioxide levels is also lower in pH (more acidic). Hemoglobin can bind protons and carbon dioxide, which causes a conformational change in the protein and facilitates the release of oxygen.

  5. Carboxyhemoglobin - Wikipedia

    en.wikipedia.org/wiki/Carboxyhemoglobin

    The average red blood cell contains 250 million hemoglobin molecules. [7] Hemoglobin contains a globin protein unit with four prosthetic heme groups (hence the name heme-o-globin); each heme is capable of reversibly binding with one gaseous molecule (oxygen, carbon monoxide, cyanide, etc.), [8] therefore a typical red blood cell may carry up to one billion gas molecules.

  6. Methemoglobinemia - Wikipedia

    en.wikipedia.org/wiki/Methemoglobinemia

    The binding of oxygen to methemoglobin results in an increased affinity for oxygen in the remaining heme sites that are in ferrous state within the same tetrameric hemoglobin unit. [17] This leads to an overall reduced ability of the red blood cell to release oxygen to tissues, with the associated oxygen–hemoglobin dissociation curve ...

  7. CO-oximeter - Wikipedia

    en.wikipedia.org/wiki/CO-oximeter

    Finger tip carboxyhemoglobin saturation monitor.. A CO-oximeter is a device that measures the oxygen carrying state of hemoglobin in a blood specimen, including oxygen-carrying hemoglobin (O2Hb), non-oxygen-carrying but normal hemoglobin (HHb) (formerly, but incorrectly, referred to as 'reduced' hemoglobin), as well as the dyshemoglobins such as carboxyhemoglobin (COHb) and methemoglobin (MetHb).

  8. Carbaminohemoglobin - Wikipedia

    en.wikipedia.org/wiki/Carbaminohemoglobin

    Most importantly, the binding of carbon dioxide to hemoglobin helps buffer blood pH by preventing carbonic acid from decreasing the pH. [ 6 ] Although, the carbaminohemoglobin protein interacts with another protein (like hemoglobin) found in red blood cells, this interaction only takes place in the bloodstream and its products can be expelled.

  9. Hemoglobin A - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin_A

    Hemoglobin A (HbA), also known as adult hemoglobin, hemoglobin A1 or α 2 β 2, is the most common human hemoglobin tetramer, accounting for over 97% of the total red blood cell hemoglobin. [1] Hemoglobin is an oxygen-binding protein, found in erythrocytes, which transports oxygen from the lungs to the tissues. [2]