Search results
Results from the WOW.Com Content Network
BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster. The method is also known as farthest neighbour clustering.
A trivial implementation of the algorithm to construct the UPGMA tree has () time complexity, and using a heap for each cluster to keep its distances from other cluster reduces its time to (). Fionn Murtagh presented an O ( n 2 ) {\displaystyle O(n^{2})} time and space algorithm.
CURE (Clustering Using REpresentatives) is an efficient data clustering algorithm for large databases [citation needed]. Compared with K-means clustering it is more robust to outliers and able to identify clusters having non-spherical shapes and size variances.
The HCS (Highly Connected Subgraphs) clustering algorithm [1] (also known as the HCS algorithm, and other names such as Highly Connected Clusters/Components/Kernels) is an algorithm based on graph connectivity for cluster analysis. It works by representing the similarity data in a similarity graph, and then finding all the highly connected ...
A fair number of algorithms have been proposed for conceptual clustering. Some examples are given below: CLUSTER/2 (Michalski & Stepp 1983) COBWEB (Fisher 1987) CYRUS (Kolodner 1983) GALOIS (Carpineto & Romano 1993), GCF (Talavera & Béjar 2001) INC (Hadzikadic & Yun 1989) ITERATE (Biswas, Weinberg & Fisher 1998), LABYRINTH (Thompson & Langley ...
COBWEB is an incremental system for hierarchical conceptual clustering. COBWEB was invented by Professor Douglas H. Fisher, currently at Vanderbilt University. [1] [2] COBWEB incrementally organizes observations into a classification tree. Each node in a classification tree represents a class (concept) and is labeled by a probabilistic concept ...