Search results
Results from the WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.
For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [13] [14] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe. The flow in between ...
Pipe flow – Type of liquid flow within a closed conduit; Pressure-driven flow; Secondary flow – Relatively minor flow superimposed on the primary flow by inviscid assumptions; Stream thrust averaging – Process to convert 3D flow into 1D; Superfluidity – Fluid which flows without losing kinetic energy
The flow is axisymmetric ( ∂... / ∂θ = 0). The flow is fully developed ( ∂u x / ∂x = 0). Here however, this can be proved via mass conservation, and the above assumptions. Then the angular equation in the momentum equations and the continuity equation are identically satisfied.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
Simple modelling will enable many properties of fully developed, turbulent plumes to be investigated. [6] Many of the classic scaling arguments were developed in a combined analytic and laboratory study described in an influential paper by Bruce Morton , G.I. Taylor and Stewart Turner [ 7 ] and this and subsequent work is described in the ...