Search results
Results from the WOW.Com Content Network
The solutions that are not exact are called non-exact solutions. Such solutions mainly arise due to the difficulty of solving the EFE in closed form and often take the form of approximations to ideal systems. Many non-exact solutions may be devoid of physical content, but serve as useful counterexamples to theoretical conjectures.
In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry.
These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether. The aether in this theory is "a Lorentz-violating vector field" [1] unrelated to older luminiferous aether theories; the "Einstein" in the theory's name comes from its use of Einstein's general relativity ...
The study of exact solutions of Einstein's field equations is one of the activities of cosmology. It leads to the prediction of black holes and to different models of evolution of the universe. One can also discover new solutions of the Einstein field equations via the method of orthonormal frames as pioneered by Ellis and MacCallum. [22]
Einstein showed how the velocity of light in a moving medium is calculated, in the velocity-addition formula of special relativity. Einstein's theory of general relativity provides the solution to the other light-dragging effects, whereby the velocity of light is modified by the motion or the rotation of nearby masses.
The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, [1] of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles (see dust solution), and the second associated with a negative cosmological ...
As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and ...
The two-postulate basis for special relativity is the one historically used by Einstein, and it is sometimes the starting point today. As Einstein himself later acknowledged, the derivation of the Lorentz transformation tacitly makes use of some additional assumptions, including spatial homogeneity, isotropy, and memorylessness. [3]