enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  3. Initial value theorem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_theorem

    Of course we don't really need DCT here, one can give a very simple proof using only elementary calculus: Start by choosing A {\displaystyle A} so that ∫ A ∞ e − t d t < ϵ {\displaystyle \int _{A}^{\infty }e^{-t}\,dt<\epsilon } , and then note that lim s → ∞ f ( t s ) = α {\displaystyle \lim _{s\to \infty }f\left({\frac {t}{s ...

  4. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .

  5. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).

  6. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  7. Hardy–Littlewood Tauberian theorem - Wikipedia

    en.wikipedia.org/wiki/Hardy–Littlewood...

    The integral formulation of the theorem relates in an analogous manner the asymptotics of the cumulative distribution function of a function with the asymptotics of its Laplace transform. The theorem was proved in 1914 by G. H. Hardy and J. E. Littlewood. [1]: 226 In 1930, Jovan Karamata gave a new and much simpler proof. [1]: 226

  8. Inverse Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Inverse_Laplace_transform

    Post's inversion formula for Laplace transforms, named after Emil Post, [3] is a simple-looking but usually impractical formula for evaluating an inverse Laplace transform. The statement of the formula is as follows: Let f ( t ) {\displaystyle f(t)} be a continuous function on the interval [ 0 , ∞ ) {\displaystyle [0,\infty )} of exponential ...

  9. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral