Search results
Results from the WOW.Com Content Network
[4]: 114 A DataFrame is a 2-dimensional data structure of rows and columns, similar to a spreadsheet, and analogous to a Python dictionary mapping column names (keys) to Series (values), with each Series sharing an index. [4]: 115 DataFrames can be concatenated together or "merged" on columns or indices in a manner similar to joins in SQL.
In many disciplines, two-dimensional data sets are also called panel data. [1] While, strictly speaking, two- and higher-dimensional data sets are "multi-dimensional", the term "multidimensional" tends to be applied only to data sets with three or more dimensions. [2]
This is the aim of multiple factor analysis which balances the different issues (i.e. the different groups of variables) within a global analysis and provides, beyond the classical results of factorial analysis (mainly graphics of individuals and of categories), several results (indicators and graphics) specific of the group structure.
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
A GROUP BY statement in SQL specifies that a SQL SELECT statement partitions result rows into groups, based on their values in one or several columns. Typically, grouping is used to apply some sort of aggregate function for each group.
Note that winsorizing is not equivalent to simply excluding data, which is a simpler procedure, called trimming or truncation, but is a method of censoring data.. In a trimmed estimator, the extreme values are discarded; in a winsorized estimator, the extreme values are instead replaced by certain percentiles (the trimmed minimum and maximum).
Certain types of problems involving multivariate data, for example simple linear regression and multiple regression, are not usually considered to be special cases of multivariate statistics because the analysis is dealt with by considering the (univariate) conditional distribution of a single outcome variable given the other variables.
Ensemble learning, including both regression and classification tasks, can be explained using a geometric framework. [15] Within this framework, the output of each individual classifier or regressor for the entire dataset can be viewed as a point in a multi-dimensional space.