enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvectors and eigenvalues can be useful for understanding linear transformations of geometric shapes. The following table presents some example transformations in the plane along with their 2×2 matrices, eigenvalues, and eigenvectors.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    The eigenvalues and eigenvectors are ordered and paired. The jth eigenvalue corresponds to the jth eigenvector. Matrix V denotes the matrix of right eigenvectors (as opposed to left eigenvectors). In general, the matrix of right eigenvectors need not be the (conjugate) transpose of the matrix of left eigenvectors. Rearrange the eigenvectors and ...

  6. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.

  7. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    The surviving diagonal elements, ,, are known as eigenvalues and designated with in the defining equation, which reduces to =. The resulting equation is known as eigenvalue equation . [ 5 ] The eigenvectors and eigenvalues are derived from it via the characteristic polynomial .

  8. Eigenvalues and eigenvectors - en.wikipedia.org

    en.wikipedia.org/.../Eigenvalues_and_eigenvectors

    In linear algebra, it is often important to know which vectors have their directions unchanged by a given linear transformation. An eigenvector (/ ˈ aɪ ɡ ən-/ EYE-gən-) or ch

  9. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    In general, an eigenvector of a linear operator D defined on some vector space is a nonzero vector in the domain of D that, when D acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where D is defined on a function space, the eigenvectors are referred to as eigenfunctions.