Search results
Results from the WOW.Com Content Network
The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. [1]
Solid oxygen O 2, like liquid oxygen, is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum. Oxygen molecules have attracted attention because of the relationship between the molecular magnetization and crystal structures, electronic structures, and superconductivity.
The oxygen reduction reaction is an essential reaction for aerobic organisms. Such organisms are powered by the heat of combustion of fuel (food) by O 2 . Rather than combustion, organisms rely on elaborate sequences of electron-transfer reactions, often coupled to proton transfer.
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (15 psi).
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
Oxygen is the third most abundant chemical element in the universe, after hydrogen and helium. [68] About 0.9% of the Sun's mass is oxygen. [19] Oxygen constitutes 49.2% of the Earth's crust by mass [69] as part of oxide compounds such as silicon dioxide and is the most abundant element by mass in the Earth's crust.
Polar molecules and large ions dissolved in water cannot diffuse freely across the plasma membrane due to the hydrophobic nature of the fatty acid tails of the phospholipids that comprise the lipid bilayer. Only small, non-polar molecules, such as oxygen and carbon dioxide, can diffuse easily across the membrane
In photosynthesis, singlet oxygen can be produced from the light-harvesting chlorophyll molecules. One of the roles of carotenoids in photosynthetic systems is to prevent damage caused by produced singlet oxygen by either removing excess light energy from chlorophyll molecules or quenching the singlet oxygen molecules directly.