Search results
Results from the WOW.Com Content Network
The reverse triangle inequality is an equivalent alternative formulation of the triangle inequality that gives lower bounds instead of upper bounds. For plane geometry, the statement is: [ 19 ] Any side of a triangle is greater than or equal to the difference between the other two sides .
To repair the triangle inequality property while maintaining the same ordering, one can convert to Euclidean distance ((,)) or angular distance θ = arccos(S C (A, B)). Alternatively, the triangular inequality that does work for angular distances can be expressed directly in terms of the cosines; see below.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
The triangle inequality states that the sum of the lengths of any two sides of a triangle must be greater than or equal to the length of the third side. [48] Conversely, some triangle with three given positive side lengths exists if and only if those side lengths satisfy the triangle inequality. [49]
This implies triangle inequality: [5] the symmetric difference of A and C is contained in the union of the symmetric difference of A and B and that of B and C. Intersection distributes over symmetric difference: = (),
According to the triangle inequality, for every three vertices u, v, and x, it should be the case that w(uv) + w(vx) ≥ w(ux). Then the algorithm can be described in pseudocode as follows. [1] Create a minimum spanning tree T of G. Let O be the set of vertices with odd degree in T. By the handshaking lemma, O has an even number of vertices.
Rewriting the inequality above allows for a more concrete geometric interpretation, which in turn provides an immediate proof. [1]+ +. Now the summands on the left side are the areas of equilateral triangles erected over the sides of the original triangle and hence the inequation states that the sum of areas of the equilateral triangles is always greater than or equal to threefold the area of ...