enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    The function f(x) = ax 2 + bx + c is a quadratic function. [16] The graph of any quadratic function has the same general shape, which is called a parabola. The location and size of the parabola, and how it opens, depend on the values of a, b, and c. If a > 0, the parabola has a minimum point and opens upward.

  3. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Graphs of quadratic functions shifted upward and to the right by 0, 5, 10, and 15. In analytic geometry , the graph of any quadratic function is a parabola in the xy -plane. Given a quadratic polynomial of the form a ( x − h ) 2 + k {\displaystyle a(x-h)^{2}+k} the numbers h and k may be interpreted as the Cartesian coordinates of the vertex ...

  4. Factor graph - Wikipedia

    en.wikipedia.org/wiki/Factor_graph

    with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.

  5. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation . The solutions of a quadratic equation are the zeros (or roots ) of the corresponding quadratic function, of which there can be two, one, or zero.

  6. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    Each coordinate of the intersection points of two conic sections is a solution of a quartic equation. The same is true for the intersection of a line and a torus.It follows that quartic equations often arise in computational geometry and all related fields such as computer graphics, computer-aided design, computer-aided manufacturing and optics.

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).

  8. Parent function - Wikipedia

    en.wikipedia.org/wiki/Parent_function

    For linear and quadratic functions, the graph of any function can be obtained from the graph of the parent function by simple translations and stretches parallel to the axes. For example, the graph of y = x 2 − 4 x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis.

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    is a factor of P(x) with real coefficients. Repeating this for all non-real factors gives a factorization with linear or quadratic real factors. For computing these real or complex factorizations, one needs the roots of the polynomial, which may not be computed exactly, and only approximated using root-finding algorithms.