enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clock rate - Wikipedia

    en.wikipedia.org/wiki/Clock_rate

    The clock rate of a CPU is normally determined by the frequency of an oscillator crystal. Typically a crystal oscillator produces a fixed sine wave —the frequency reference signal. Electronic circuitry translates that into a square wave at the same frequency for digital electronics applications (or, when using a CPU multiplier , some fixed ...

  3. CPU multiplier - Wikipedia

    en.wikipedia.org/wiki/CPU_multiplier

    In computing, the clock multiplier (or CPU multiplier or bus/core ratio) sets the ratio of an internal CPU clock rate to the externally supplied clock. This may be implemented with phase-locked loop (PLL) frequency multiplier circuitry. A CPU with a 10x multiplier will thus see 10 internal cycles for every external clock cycle. For example, a ...

  4. Cycles per instruction - Wikipedia

    en.wikipedia.org/wiki/Cycles_per_instruction

    In computer architecture, cycles per instruction (aka clock cycles per instruction, clocks per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. [1] It is the multiplicative inverse of instructions per cycle.

  5. Megahertz myth - Wikipedia

    en.wikipedia.org/wiki/Megahertz_myth

    As of 2018, many Intel microprocessors are able to exceed a base clock speed of 4 GHz (Intel Core i7-7700K and i3-7350K have a base clock speed of 4.20 GHz, for example). In 2011, AMD was first able to break the 4 GHz barrier for x86 microprocessors with the debut of the initial Bulldozer based AMD FX CPUs. In June 2013, AMD released the FX ...

  6. Instructions per cycle - Wikipedia

    en.wikipedia.org/wiki/Instructions_per_cycle

    The number of instructions per second is an approximate indicator of the likely performance of the processor. The number of instructions executed per clock is not a constant for a given processor; it depends on how the particular software being run interacts with the processor, and indeed the entire machine, particularly the memory hierarchy.

  7. Front-side bus - Wikipedia

    en.wikipedia.org/wiki/Front-side_bus

    The frequency at which a processor (CPU) operates is determined by applying a clock multiplier to the front-side bus (FSB) speed in some cases. For example, a processor running at 3200 MHz might be using a 400 MHz FSB. This means there is an internal clock multiplier setting (also called bus/core ratio) of 8. That is, the CPU is set to run at 8 ...

  8. Overclocking - Wikipedia

    en.wikipedia.org/wiki/Overclocking

    However, the memory performance is computed by dividing the processor clock rate (which is a base number times a CPU multiplier, for instance 1.8 GHz is most likely 9×200 MHz) by a fixed integer such that, at a stock clock rate, the RAM would run at a clock rate near 333 MHz. Manipulating elements of how the processor clock rate is set ...

  9. Memory divider - Wikipedia

    en.wikipedia.org/wiki/Memory_divider

    Then, the base memory clock will operate at (Memory Divider) × (FSB) = 1 × 200 = 200 MHz and the effective memory clock would be 400 MHz since it is a DDR system ("DDR" stands for Double Data Rate; the effective memory clock speed is double the actual clock speed). The CPU will operate at 10 × 200 MHz = 2.0 GHz.